www.ufrb.edu.br/neas +55 (75) 3621-2798

<u>APOSTILA DE EXERCÍCIOS – PARTE I</u>

CCA 039 - IRRIGAÇÃO E DRENAGEM

Centro/Setor:

Centro de Ciências Agrárias, Ambientais e Biológicas Núcleo de Engenharia de Água e Solo – NEAS

Professores:

Prof. Dr. Vital Pedro da Silva Paz

Prof. Dr. Tales Miler Soares

Prof. Dr. Francisco Adriano de C. Pereira

Prof. Dr. Áureo Silva de Oliveira

CRUZ DAS ALMAS – BAHIA - 2013-

www.ufrb.edu.br/neas +55 (75) 3621-2798

RELAÇÃO SOLO-ÁGUA

NEAS - Núcleo de Engenharia de Água e Solo

www.ufrb.edu.br/neas +55 (75) 3621-2798

- 1. Estudar o Capítulo 3 "O solo como um reservatório de água" (Livro: A água em sistemas agrícolas; Klaus Reichardt).
- 2. Apresentar uma resenha (3 páginas digitadas em espaço 1,5) sobre a importância da água na produção vegetal, com ênfase à irrigação e drenagem.
- 3. Coletou-se uma amostra de solo à profundidade de 60cm, com anel volumétrico de diâmetro de 7,5cm. O peso úmido do solo foi 560g e após 48 horas em estufa à 105°C, seu peso permaneceu constante e igual a 458g. Qual a densidade global do solo? Qual sua umidade na base de massa e volume?
- 4. O solo da amostra anterior, após 48 horas em estufa à 105°C foi colocado em uma proveta contendo 100cm³ de água. Leu-se então, na proveta, um volume de 269cm³. Qual a densidade das partículas do solo?
- 5. Qual a porosidade total, a porosidade livre de água e o grau de saturação relativa da amostra do problema anterior?
- 6. Coletou-se uma amostra de solo com anel volumétrico de 200cm³, a uma profundidade de 10cm. Obteve-se m = 332g e ms = 281g. Após a coleta, fez-se um teste de compactação do solo, passando sobre ele um rolo compressor. Nova amostra coletada com o mesmo anel e a mesma profundidade apresentou: m = 360g e ms = 305g. Determine antes e depois da compactação: a densidade global, U, θ e a porosidade total. Considere a densidade das partículas do solo igual a 2,7 g/cm³.
- 7. Um pesquisador necessita de exatamente 100g de um solo seco, e dispõe de uma amostra úmida com θ = 0,250 cm³/cm³ e ρ g = 1,2 g/cm³. Quanto solo úmido deve pesar para obter o peso de solo seco deseiado?
- 8. A umidade média de um perfil de solo até a profundidade de 60cm é de 38,3% em volume. Qual a altura d'água armazenada nesta camada?
- 9. Dada uma extensão de solo de 10ha, considerada homogênea quanto à densidade global e à umidade até os 30cm de profundidade, qual a massa de solo seco, em toneladas, existentes na camada 0-30cm de profundidade? A umidade do solo é de 0,2 g/g e sua densidade global 1,7 g/cm³. Quantos litros de água estão retidos pela mesma camada de solo?
- 10. Um solo de 80cm de profundidade tem um θ = 0,13 cm³/cm³. Calcular a quantidade de água que deve ser adicionada para trazer a umidade volumétrica do solo à capacidade de campo, sendo θ_{cc} = 0,13 cm³/cm³.
- 11. Um solo tem uma umidade inicial de 0,10 cm³/cm³. Que profundidade uma chuva de 10cm umedecerá o solo, considerando a umidade volumétrica do solo na capacidade de campo igual a 0,30 cm³/cm³?
- 12. No mesmo solo do exercício anterior, quanta água é necessária para umedecer o solo até a profundidade de 125cm?

+55 (75) 3621-2798

13. A umidade de um solo à capacidade de campo é 0,30 cm³/cm³. Sua umidade inicial (% massa) e sua densidade global variam com a profundidade e seus valores são dados na tabela abaixo. Assumindo que a densidade absoluta da água é 1g/cm³, calcular a profundidade de penetração de uma chuva de 5cm.

_									
	Incremento de	Umidade a base	Densidade global	θ_{i}	$\Delta\theta$ (cm ³ /cm ³)				
	profundidade (cm)	de massa (g/g)	(g/cm³)	(cm ³ /cm ³)					
	0 –5	0,05	1,2	0,060	0,240				
	5 – 20	0,10	1,3	0,130	0,170				
	20 - 80	0,15	1,4	0,210	0,090				
	80 – 100	0,17	1,4	0,238	0,062				

- 14. Os dados da tabela a seguir são valores médios de θ obtidos com uma sonda de neutrons numa terra roxa estruturada, em local plano, com cultura de milho. Todas as leituras foram feitas às 8 horas. Pede-se:
 - a) desenhar em um só gráfico os perfis de umidade de cada dia;
 - b) calcular o armazenamento de água em cada dia, até a profundidade de 120cm;
 - c) calcular as variações de armazenagem entre cada leitura;
 - d) sabendo-se que houve apenas uma chuva após a leitura do dia 03/06, calcular a evapotranspiração da cultura, em mm/dia, para cada período de 28/05 a 03/06.
 - e) No período de 28 a 31/05, calcular a contribuição de cada camada de 15cm na evapotranspiração da cultura;
 - f) Imaginando que a mesma taxa media de evapotranspiração ocorrida no período de 28/05 a 03/06 continue no período de 03/06 a 06/06, calcular a quantidade de água recebida pelo solo através da chuva do dia 03/06, que foi de muito curta duração.

	Profundidade	28/05	31/05	03/06	06/06
	0 - 15	0,331	0,319	0,301	0,405
	15 - 30	0,368	0,351	0,343	0,423
	30 - 45	0,410	0,393	0,379	0,431
	45 - 60	0,484	0,474	0,468	0,477
	60 - 75	0,439	0,432	0,428	0,426
	75 - 90	0,421	0,418	0,415	0,413
	90 – 105	0,396	0,396	0,395	0,396
_	105 – 120	0,370	0,371	0,371	0,370

15. Sendo dados:

- capacidade de campo = 22 g da água/100g de solo
- ponto de murchamento permanente = 11 g de água/100g de solo
- profundidade efetiva do sistema radicular = 30cm
- densidade global = 1,4 g/cm³
- fator de disponibilidade = 0,6;
- evapotranspiração máxima = 4,6 mm/dia

Pede-se:

- a) disponibilidade total de água;
- b) disponibilidade real de água;
- c) capacidade total de água;
- d) capacidade real de água;
- e) frequência de irrigação e a lâmina liquida;
- f) a umidade a base de volume na qual se deve proceder nova irrigação;
- g) qual será a lâmina liquida, caso se adote uma freqüência de 4 dias;
- h) qual a lâmina bruta a ser aplicada nos casos (c) e (e), supondo uma eficiência de 80%.

+55 (75) 3621-2798

16. Sendo dados:

- umidade a capacidade de campo = 0,23 cm³/cm³
- umidade no momento da irrigação = 0,12 g/g
- densidade global do solo = 1,2 g/cm³

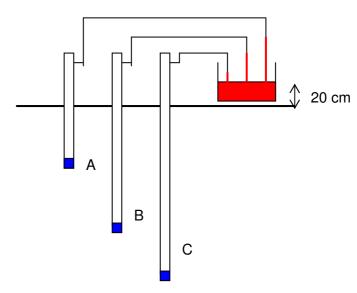
UFB Universidade Federal do Recôncavo da Bahia

- profundidade efetiva do sistema radicular = 50cm

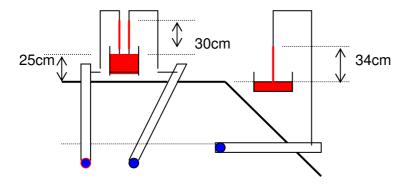
Pede-se:

O volume de água a aplicar por irrigação em m³/h, mm, L/m²

+55 (75) 3621-2798 www.ufrb.edu.br/neas

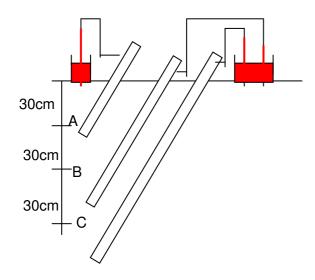

MOVIMENTO DA ÁGUA NO SOLO

I. Potenciais e Curva Característica de Água no Solo


+55 (75) 3621-2798

1. Nos tensiômetros da figura, fez-se leituras nos dias 14/09 e 18/09. Estime o potencial total e comente sobre a variação de umidade nas diferentes profundidades.

Prof	Altura de	Hg (cm)		
(cm)	14/09	18/09		
25	20,2	24,0		
50	26,5	29,1		
75	34,3	36,8		



2. Estime o potencial total da água a partir dos tensiômetros instalados de acordo com a figura abaixo e comente sobre o movimento da água.

- 3. Em uma cultura de arroz inundado, a lâmina de água acima da superfície do solo é de 15cm. Qual o potencial de pressão em um ponto do solo 15cm abaixo da superfície ?
- 4. Determinar o potencial gravitacional da água em três pontos A, B e C situados a 30, 60 e 120 cm abaixo da superfície de um solo não saturado. Dar os resultados em cm H_2O e atm.
- 5. Estime o potencial total da água no solo para as diferentes profundidades (figura) e comente sobre o movimento da água.

+55 (75) 3621-2798

h(A) = 35cm

h(B) = 26cm

h(C) = 18cm

6. Para um solo obteve-se a curva de retenção de água a partir dos dados da tabela abaixo. Faça os gráficos $\psi_m \times \theta$ em papel gráfico.

ψ _m (atm)	θ (cm³/cm³)
0	0,541
-0,1	0,502
-0,3	0,456
-0,5	0,363
-1,0	0,297
-3,0	0,270
-5,0	0,248
-10,0	0,233
-15.0	0.215

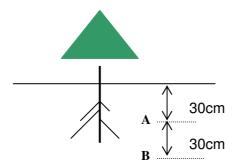
7. Uma amostra de solo foi submetida, após saturada, a diferentes tensões, obtendo-se os seguintes resultados. A massa seca é de 105,6 g e a densidade global é 1,41 g/cm³. Fazer a curva de retenção do solo para o intervalo de 0 a 300 cm H₂O.

	,				
$\psi_{\rm m}$ (cm H ₂ O)	Peso da Amostra Úmida (g)				
0	146,6				
50	144,9				
100	141,9				
150	135,6				
200	129,3				
250	125,1				
300	121,1				

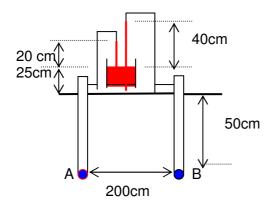
- 8. Um tensiômetro com cuba de mercúrio está instalado uma profundidade de 20cm. Sua leitura é de 20,63 cm Hg e sua cuba está a 40cm da superfície do solo. Qual o potencial matricial do solo naquela profundidade?
- Considerando que a curva de retenção do exercício 7 é do mesmo solo do exercício 8, qual a umidade do solo no ponto onde o tensiômetro está instalado?

- 10. Depois de três dias, o tensiômetro do exercício 8 apresenta uma leitura de 28,57 cm Hg. Qual a nova umidade do solo?
- 11. Para dois solos obteve-se os dados de retenção de água apresentados da tabela sequinte.
 - a) Faça as curvas de retenção de ambos os solos, no mesmo papel, utilizando papel comum e papel semi-log;
 - b) Qual seria o solo mais arenoso?
 - c) Qual seria a umidade dos solos para um potencial de 0,7 MPa ?
 - d) Para os solo, considerando que a capacidade de campo corresponde à uma tenção de 0,33 atm e o ponto de murcha à15 atm, estime:
 - A disponibilidade total de água; i.
 - A porcentagem de água disponível para os intervalos de tensão. ii.

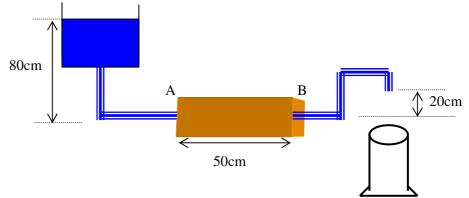
ψ _m (cm H ₂ O)	θ (cm ³ /cm ³) - Solo A	θ (cm ³ /cm ³) - Solo B			
0	0,556	0,491			
10	0,540	0,398			
100	0,430	0,257			
300	0,403	0,236			
500	0,391	0,227			
1000	0,382	0,209			
3000	0,375	0,198			
10000	0,359	0,195			
15000	0,343	0,191			


- 12. Estudar e revisar as unidades de pressão
- 13. Quais as limitações para o uso da curva de retenção ?
- 14. Qual o limite máximo de tensão permitido para uso do tensiômetro ?
- 15. Estudar a importância das forças de adesão e coesão e, os efeitos da capilaridade na retenção de água pelos solos.
- 16. Estudar os capítulos 1 "Água no Solo" e 3 "Qualidade da água para irrigação e salinização do solo" (Livro: Manual de Irrigação; Salassier Bernardo).

II. Fluxos e Infiltração da Água no Solo


MOVIMENTO DA ÁGUA NO SOLO

+55 (75) 3621-2798


Dado o esquema abaixo, calcular o fluxo de água na camada de solo da 60cm de profundidade para a camada de 30cm, sendo $K(\theta) = 0.1$ cm/dia.

- 1. Através de uma seção transversal de 5 m² passam 22 litros de água por dia. Qual a densidade de fluxo de água neste solo ?
- 2. Dados os tensiômetros instalados de acordo com a figura, determine a densidade de fluxo entre os pontos A e B (K = 0,50 cm/min).

- 3. Entre uma camada profunda de solo (em torno de 150cm) a condutividade hidráulica é de, aproximadamente, 5,515cm/dia. Dois tensiômetros instalados a 135cm e 165cm de profundidade medem o gradiente de potencial. O primeiro tensiômetro tem uma leitura de $\psi_m = -75 \text{ cmH}_2\text{O}$ e o segundo $\psi_m = -88 \text{ cmH}_2\text{O}$. Qual o fluxo de água nesta camada ?
- 4. Através de uma seção de solo de 100 cm², conforme mostra a figura abaixo, o volume de água que atravessa essa seção é de 588 cm³ em um dia. Calcular a condutividade hidráulica saturada do solo.

+55 (75) 3621-2798

- 5. Entre dois pontos no solo, na horizontal, existe um gradiente de potencial de 1,7x10⁻³ (cm³/cm³)/cm de solo. O fluxo de água é de 0,26 cm/dia. Qual a condutividade hidráulica nessa região ?
- 6. Foi realizado um teste de infiltração, cujos resultados então apresentados na tabela abaixo.

T - Tempo acumulado	Leitura na régua	Diferença	I - Infiltração acumulada
(min)	(cm)	(cm)	(cm)
0	5,0		
1	3,4/5,0		
2	4,6		
3	4,3		
4	4,1		
5	3,9/5,0		
10	4,2		
15	3,6/5,0		
20	4,5		
30	3,7/5,0		
40	4,3		
50	3,7		
60	3,1/5,0		
70	4,2		
80	4,0		
100	3,1/5,0		
120	4,2		
140	3,4/5,0		
170	3,8/5,0		
200	3,9/5,0		
230	4,0		
260	3,0/5,0		
290	4,0		

- a) Determinar a equação da Infiltração
- b) Determinar a equação da velocidade de infiltração
- c) A velocidade de infiltração básica do solo (VIB)
- d) Determine o tempo necessário para a infiltração de uma lâmina de água correspondente a 30mm?
- 7. Estudar o capítulo 2 "Relação Solo-Água-Planta e Atmosfera" (Livro: Manual de Irrigação; Salassier Bernardo)
- 8. Dentro de uma tubulação de água de secção transversal de 20 cm² passam 150 cm³ de água em 8 minutos. Qual a vazão e a densidade de fluxo da água ?

+55 (75) 3621-2798 www.ufrb.edu.br/neas

RELAÇÃO PLANTA-CLIMA

NEAS - Núcleo de Engenharia de Água e Solo

www.ufrb.edu.br/neas +55 (75) 3621-2798

- 1. Estudar o capítulo 2 "Relação Solo-Água-Planta e Atmosfera" do livro Manual de Irrigação (Salassier Bernardo).
- 2. Em dada localidade, em certo dia, a evapotranspiração potencial de referência é 5,3mm/dia. Neste mesmo dia, quais as evapotranspirações máximas para outras culturas com coeficientes de cultura de 0,4;0,8;1,0 e 1,2?
- 3. Qual o valor de ETo estimado pelo método de Thornthwaite, para uma localidade no Equador, de temperatura média 25°C, para um período de 7 dias, em setembro, quando a temperatura média do ar para o período em questão é de 24°C?
- 4. Um tanque de evaporação tipo Classe A, tem uma bordadura de grama 8m. Em um dia no qual ele perdeu 6,7 mm, a umidade relativa foi sempre maior que 75% e o vento moderado. Qual o valor de ETo?
- 5. Sabendo-se que a ETp de uma determinada região é 4,5 mm/dia e que o Kc da cultura é 1,1, calcule a lâmina líquida necessária para essa cultura.
- 6. Determinar a evapotranspiração de referência para a localidade de Cruz das Almas Bahia localizada a 12º40'Sul pelo método de Thorntwaite, sabendo-se que a temperatura normal (ºC) tem a seguinte distribuição ao longo do ano: JAN = 26,3 FEV = 26,5 MAR = 26,4 ABR = 25,1 MAI = 23,8 JUN = 22,5 JUL = 21,8 AGO = 22,0 SET = 23,0 OUT = 24,5 NOV = 25,5 DEZ = 26,0 Média anual = 24,5 (ºC)

ETPp = $16 (10 \text{ Ti/I})^a$ Ti>0°C a = 6,75.10-7.13 - 7,71.10-5.12 + 1,7912.10-2.1 + 0,49239I = som (i=1 até 12) (0,2.Ti)1,514, Ti>0°C

Duração máxima de insolação diária (N), em horas nos meses e latitude. Os valores correspondem ao 15° dia de cada mês.

Lat.	JAN	FEV	MAR	ABR	MAI	JUN	JUL	AGO	SET	OUT	NOV	DEZ
12°S	12,7	12,5	12,2	11,8	11,6	11,4	11,5	11,7	12,0	12,1	12,7	12,8
14°S	12,8	12,6	12,2	11,8	11,5	11,3	11,4	11,6	12,0	12,1	12,8	12,9
20°S	13,2	12,8	12,2	11,6	11,2	10,9	11,0	11,4	12,0	12,5	13,2	13,3